
77 GNBA IRD 
VALIDATION SYSTEM,(u)

LASSIFIED FCCTS/TR-77/03 

___

1~OAO39 7~ ______________
DATE

U 
_____ 5~ 77 I



I .0 ~ ~
_ _ _ _  ~ ~: ~

21

I . I ~~~

1 .25 llhIU~ HM~
MICROCOPY R~ SO LOI ION II ~ I CIIAR I

N~~l I ~~N’\~ I~tJ WtA IJ  ~~~~~~~~~~~



• _ _ _ _ _ _ _  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

•;~~~~~
- -

~~~~_:---~ ~~~~~~~~~~~ 
:-‘

~

--- - -•——-———‘——‘—‘ —————————
~

—— -  -

~~~~~D D C
197 1111

The DOD COBOL compiler validation ~~~~~system 
. 

,f r 9
by GEORGE N. BAIRD

© Deparimen~ of the Navy
Washington , D. C.

C\TRODUCTION Data Systems Lan guages* and published in May of
1961. Recognizing that the language would be subject

The ability to benchmark or validate software to ensure to additional development and change , an attempt
that design specifica tions are satisfied is an extremely v~as made to create uniformity and predictability in

difficult task. Test data , generally designed by the the various implementations of COBOL compilers.
creators of said software , is generally biased toward a The language elements were placed in one of two
specific goal and tend not to cover many of the pos- categories : required and elective.
sibil ities of combinations and interactions. The phi- Required COBOL-1961 consisted of language ele~
losophy of suggesting that “a programmer will never ments (features and options) which must be imph’-
do.  . .“ or “this particular situation will never happen” mented by any implementor claiming a COBOL-1961
is altogether absurd. First , “never” is an extremely compiler. This established a common minimum subset
long time and secondly, the Hagel theorem of pro- of language elements for COBOL compilers and hope-
gramming states that “if it can be done, whether absurd fully a high degree of transferability of source programs
or not , one or more programmers will more than likely between compilers if this subset was adhered to.
try it. ’ Elective COBOL-1961 consisted of language elements

Therefore , i f a particular piece of software has been whose implementation had been designated as op-
thoroughly checked against all known extremes and a tional . It was suggested that if an implementor chose
majority of all syntactical forms , then the Hagel to include any of these features (either totally or
theorem of program ming will not affect the software partially) he would be expected to implement these
in question. The DOD CCVS attempts to do just that in accordance with the specifications available in
by checking for the fringes of the specifications of COBOL-l961. This was to provide a logical growth
X3.23-1968’ and known limits. It is assumed that a for the language and attempt to prevent a language
COBOL compiler will perform satisfactorily for the element from having contradictory meaning between

~oi ( lit routines , then it is likely that the compiler sup- the language development specifications and im-
ports the entire language. However , if the computer plementor’s definition.

Qhas trouble with handling the routines in the CCVS As implementors began providing COBOL compilers
can be a.s’eimed that there will indeed be other based on the 196 1 specifications , unexpected problems

errors of a more serious nature, became somewhat obvious. The first problem was that

~~~~~~~ 
‘Fhe following is a brief account of the history of the the specifications themselves suggested mandatory as

• ..,.,JDOD CCVS, the automation of the system and the well as optional language elements for implementing

~~~ ~~~ adaptab ility of the s~~tem to given compilers. COBOL compilers. In addition the development docu-

AC KCROUND 
• The Conference on Data Syatetne angungea(CODA8YL) ii~ an
informal and voluntary organization of inter~~ted individuals £
supported by their institution s who contr ibute thei r efforts and

The first revision to the initi a l specification for expene~ toward the ends of d~ igning and developing techniques

2 
and lan~uajee to a~nst in data systems analysis, design , and

( -OW) l~ (designated as (A)W)L- 19b1 ) was approved i~~pl~~~~thtion . OODASYL is responsible for the development
by the Executive Committee of th e (‘onferenr i’ on and maintenance of COBOL.

819 
U1TQI j A~~~~~~~ -

F I rdui ff111 I mufi fri r f rn I I  mur I I _________ — -



-~-~—- --

~~~~ ~~‘ T ~~~:ff •_ • .~~~ 
_ _ —.-~~~ ——-—--- —----——

~
• --

~~~ 
—-

820 Fall Joint Computer Conference , 1972

mont produced by CODASYL was likel y to change it is clear that  some problems may not be detected.
periodically thus , providing multi ple specifications to (The initial release of the Navy COBOL audit routine s
implement from. Compilers could consist of what the revealed over 50 bugs in one parti cu lar compiler which
implementor chose to implement which would severel y had been released five years e:tr!ier .)
handicap any chance of transferability of programs By providing the common hasir ~‘:om which to imp le-
among the different compilers , particularly since no two merit arid a mechanism for determining the accurac y
imp lementors necessarily th ink  alike . Philosop hies vary and correctness of a compiler relative to the sJ)eeihea -
both in the selection ~f elements for a COBOL compiler tion , the problem of sinorga.sbord compilers (that nIav
and in the techni ques of implementing the compiler or may not produce expected results) should bec ome
itself. (As ridiculous as it may sound , some compilers extinct.
actuall y scan , sy iitax check and issue diagnostics for The standardization of COBOL began on 15 January
COBOL words that might appear in comments both 1963. This wa.s the first meeting of th e American Stan—
iii the REMARKS paragraph of the Identification dards Association Committee , X3.4.4 , * t h e  Task Group
Division and in NOTE sentences in the Procedure for Processor Documentation and COBOL. The pro-
Division.) The need for a common base from which to gram of work for X3 .l.4 included . . .  “Write test
implement became obvious. If the language was to problems to test specific features and combinations of
provide a hi gh degree of compatability, then all im- features of COBOL. Checkout and run the test problems
plementations had to be based on the same specifica- on various COBOL compilers.” A working group
tins. (X3.4.4 .2) was established for creating the “test

The second problem was the reliability of the corn- problems” to be used for determining feature availa-
piler itself. If the manual for the compiler indicated bility.
that it supported the DIVIDE statement , the user The concept of a mechanism for mea.suring th e
assumed this was true. If the compiler then accepted compliance of a COBOL compiler t o the proposed
the syntax of the DIVIDE statement , the user as- standard seemed reasonable in view of the fact that
sumed that the object code necessary to perform the other national standards did indeed lend themselves
operation was generated . When the program executed, to some form of verifications , i.e., 2 X4 ’s, typewriter
he expected the results to reflect the action represented keyboards, screw threads.
in his source code. It appears that in some cases perhaps
no code was generated for the DIVIDE statement

IMPLEMENTING A VALIDATION SYSTEMand the object program executed perfectly except for
FOR COBOLthe fact that no division took place. In another case,

when the object program encountered the DIVIDE
In order to implement a COBOL program on a givenoperation , it simply went into a loop or aborted . At

this point , the programmer could become decidedly system, regardless of whether the program is a valida-

frustrated. The source code in his program indicated tion routine or an application program, the following
must be accomplished:that : (1) he requested that a divide take place , (2) there

was no error loop in his program, (3) the program
should not abort. This is the problem we are ad- 1. The special characters used in COBOL (i.e.,

~~~ Ill #
~~ 

F
dressing: A programmer should concern himself with ~~~ ~~~ 

+1, 
1
<

P etc.) must be converted for the j
producing a source program that is correct logically system being utilized.t

and the necessary operating system control statements 2. All references to implenientor-names within each

to invoke the COBOL compiler. In doing so, he should of the source programs must be resolved.

be able to depend on the compiler being capable of 3. Operating System Control Cards must be pro-

contributing its talent in producing a correct object
• The American Standards Association (ASA), a volunta ryprogram.
national standards body evolved to the United States of AmericaIf the user was assured that either: (1) each instruc- Standards Institute (USASI) and finally the American National

tion in the COBOL language had been implemented Standards Institute (ANSI ) . The committee X3.4 .4 eventually
correctly, or , (2) that each statement which was im- became X3J4 under a reorganization of the X3 structure . X3J4 is
pie nented did not give extraneous results, then the currentl y in the process of producing a revision to X3.23-1965.
ab ’ve situation could not exist. t For moøt computers the representatives for the characters

A Z , 0-9, and the space (blank chara cter ) are the same. However ,‘i’hus, the need for a validation tool becomes ap- there is sometimes a difference in representation of the other
parent. Although all vendors exercise some form of characters and therefore conversion of these characters from one
qualit y control on their software before it is released, computer to another may be necessary.

— - — ~~~~~~~~~~~~~~~~~~~~~~~~~ _ _ _ s_~~~~~~~~ • - - -• • ~~~~~~~~~ — — A • ~~~~~~~~~~~~~~



.—~ _______ . .... -.... -..-.— —

The DOD COBOL Compiler Validation System ~

duced which will cause each of the source programs to to identify the problem. The supporting code (printing
be (omp iled and executed . Additionally, the user must routine, pass routine, fail routine, etc.) was to be written
have the ability to make changes to the source pro- using the moat elementary statements in the low-level
grams, i .e ., delete statements , replace statements , and of COBOL. The reason for this was twofold~
add statements .

4. As the programs are compiled , any statements i. The programs would be able to perform on a
that are not synta ctical ly acceptable to the compiler . minimum COBOL compiler (Nucleus level I ,
must be modified or “deleted” so that a clean compila- Table Handling level 1, and Sequential Acces.s
tion takes place and an executable object program is level 1).
produced. 2. The chances of the supporting code not being

~~ . The programs are then executed . All execution acceptable to the compiler being tested were
time aborts must he resolved by determining what lessened.
caused the abort and after deleting or modif ying that
parti cular test or COBOL element , repeating steps 3 The programs, when ready, would be provided in
and 4 until a normal end of job situation exists. card deck form along with the necessary documenta-

tion for running them. (The basic philosophies of

Decelopment of audit ro utines design set forth by X3.4.4.2 were carried through all
subsequent attempts to create compiler validat~ ~n

\Iar eh 1963, X3.4.4.2 (the Compiler Feature Availa- systems for COBOL.)

bih i l y  Working ( ir oup) began its effort to create the Assignments were made to the members of the corn-
mittee and the work began . This type of effort at the

COBOL programs which would be used to determine committee level, however, was not as productive as
the degree of conformance of a compiler to the proposed the work of standardizing the language itself.
standard. The intent of the committee was not to fur-
n~sii a means for debugging compilers , hut rather to In April 1967, the Air Force issued a contract for a

determin e “feature availability. ” Feature availability system to be designed and imp lemented which could
be used in measuring a compiler against the standard .

%V5.4 understood to mean that the compiler accepted the The Air Force COBOL Compiler Validation System
syntax and produced object code to produce the de- was to create test programs and adapt them to a given
sired result. All combinations of features were not to
he tested ; onl y a carefully selected sample of features system automatically by means of fifty-two parameter

cards.(singly and in combination) were to be tested to insure
that they were operational. The test programs them-
selves were to produce a printed report that would The Navy COBOL audit ro utines
reflect the test number and when possible whether the
test ‘Passed” or “Failed.” See Figure 1. In August of 1967 , The Special Assistant to the

When a failure was detected on the report , the user Secretary of the Navy created a task group to influence
c ould trace the failure to the source code and attempt the use of COBOL throughout the Navy. Being aware

of both the X3.4 4.2 and Air Force efforts , (as well
Source Statementa as the time involved for completion), a short term
TEST-000I. project was established to determine the feasibility

of validating COBOL compilers . After examining the
MOVE 001 TO TEST-NO.
MOVE ZERO TO ALPHA. information and test programs avai lable at that time,
ADI) I TO ALPHA. the first set of routines was produced . in addition to the
IF ALP HA — I PERFORM PASS ELSE PERFORM FAIL, original X3.4.4 .2 philosophy, the Navy added the(

— TEST-0002. capability of providing the result created by the corn-

~~ Results puter as well as the expected result when a test failed .
Also, instead of a test number , the actual procedure

C TEST NO P - F name in the source program was reflected in the out put.AD I) I P
See Figure 2.

. The preliminary version of the Navy COBOL audit
0 routines ~~nq made up of 12 programs consisting of

Al)!) 21 F about 5000 lines of source codi . The tailoring of the
Figu re 1—Example of X3.4.4.2 test and printed result.’ programs to a particular compiler was done by hand



0 ~~~~~~~~~ 00__ ~~~~ =0 
~~~~~~~~~~~~~~~~~~~~~~~~~~~ .. “~~~~~~~~~~~

- --‘-——‘ --‘- - 
~~~~

- : ‘~~~~~~ —~~~~~~~~~~~~~~~~~~~~ -‘-- -~~~~~~~~~~ . - -- - -.~~~---;,-;--.- -—-- - -,-— -

822 l”all J : r - t Computer (‘onfi~ ence , 1272

(by phy sically chang ing card’ in the deck or by using V-I Rout ine Ir~put :
t h e  v ’ n d r -  ‘.o ftwar t for updating COBOL programs). X-O SOURCE-COMPUTER-NAME
As ~~~~ %v r’ deleted c r  modified , it was difficult to x-i OBJECT-COMPUTER-NAME
bring t i ”  ~r grams back to th e i r  virgi n state for sub-. X-.I
sequent run . ag’ tiu ’~t different compilers or for de-
termining what  cheri ges had to be made in order that
the programs would execute. X-S PRINTER

This was a crudo effort but it established the neces- X-9 CARD-READER
sary c vid nce that  the  pr ject ~~~ feasible to continue X-l0
and defined techn iques for doveloping auditing systems.
Because of the favlcrab lo comments received on this
initial w~irk don e by the N~t v .  it appeared in the bes t
interest of all to continue th e effort. x—~After ste~olV development and testing for a year .- . . Audit Routine File:
Version 4 of the r~avv CI )BOL Audit Routines ~~~
released in 1)ecernher 1969. The routines consisted of SOURCE-COMPUTER.
55 Programs, consisting (i f 18,000 card images capable
of testing th e full standard. The routines had also be-
come one of the benchmarks for all systems procured -

by the Department of th e Navy in or&’r to ensure that SELECT PRINT-FILE ASSIGN TO
the compiler delivered with the system supported the XX.XXXS
required level of American National Standard COBOL.* The audit routine after processing would be:

Also , Version 4 introduced the VP-Routine, a pro- SOURCE-cOMP~rFER.
gram that automated the audit routines. Based on SOURCE-COMPUTER-NA ME.
~fty parameter cards, all implementor-names could
be resolved and the test programs generated in a one- .

pass operation. See Figure 3. -

In addit~oii , by coding specific control cards in the SELECT PRINT-FILE ASSIGN TO
Working-Storage Section of the VP-Routine as con- 0

stant.s , the output of the VP-Routine became a file Figure 3—ExamDle of input to the support rout ine , Pupu lat ion
that very much resembled the input from a card reader , file where audit routines are stored and resolved audit routine

i.e., control cards , programs, etc. after processing

By specifying the required Department of Defense that subset- of elements or modules would be selectedCOBOL subset of the audit routines to he used in a . . . . ‘

i.e., SUBSET-A , B C, or D. The capability also existedvalidation , only the programs necessary for validating 0 
,to update the programs as the card reader file was

Source Statements being created. The use of the VP-Routine was not
mandatory at thi s t im ’, but merck t o assist the person

ADD-TE.ST-1. 
Al PH4 

validating the (‘ompil( ’r in setting up the  programs for

ADD I i’O ALPHA: 
‘ compilation. O n e  the VP- R out in e was set up for a

IF ALPHA =2 PERFORM PASS EI~ E PERFORM FAIL. given sy stem , there was l i t t l e  trouble running the audit
routines. The user then had only to concern himself
with the validation i ts e lf  and with achieving successful

Res It. 
results from execution of the audit routines. When an

FEATURE PARAGR APH P/F COMPUTEE ) EXPECTED updated set of routines ~vas distributed , there was flu
effort involved in ri ph acing t i n  old input tape to the

A l) I )  ADI)-TEST-l FAll I 2 VP—Ro utine w ith th e new tape.
ADD Al)D-TEST-2 PASS

Figure 2--Example of Navy test and printed results The Air  Force COBOL au dit routine s

• i 1965, the Department of l)efense , realizing that several , . .  . - ‘ . .
thousand m in i i nat ioi , , ,

~ m,sii i les , - levels were possible , est I fhr  A ii’ F re, ( )1l( I I ( oni pil ’ ‘r \ alidat Iofl ~~st em
Jished four sul, s,t ,s of .~uiie r ica n N :itioieil Standard COBOL for (A FC( ‘\~~ ) wic~ nut a si ties of (‘( ) l~( )l~ programs but .
pro curenie rit ;‘urtsrnes. rath er a test - program generator. ‘l’h .’ User could select

—•_.

~ 

..~~~ ~~~~~. , — ~~~~~~. ~~~~~~~~~~~~~~ - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
_ _ _ _



The DOD COBOL Compiler Validation System 8°3

Source statement in test library
T 1N07.MAIOI NUC , 2NUC 4U
406151 77 WRK-DS-18V00 PICTURE 89(18).
4(X)4~I 77 A18ONES-DS-18VOO PICTURE 89(18).
400471 VALUE EII11E11111 1 IE111 . 

-

400851 77 A1SONES-CS-18VOO PICTURE 59(18) COMPUTATIONAL
400891 VALUE ll1l1I t 11l 1 ll11l 11 .
802925 TEST-INUC-078.
802930 MOVE AI8ONES-DS-18V00 TO WRK-DS-18VOO. I ,
5029:G ADD AI8ONES-CS-I8VOO TO WRK-DS . 18V00 0

802940 MOVE WRK-DS-18V00 TO SUP-WK-A.
802945 MOVE ~222222222222222222’ TO SUP-WK-C.
802950 MOVE ‘1NO78’ TO SUP-ID-WK-A
802955 PERFORM SUPPORT-RTN THRU SUP-TRN-C.
Test results

.1NO78 .1N079.

.222’222222222222222.09900.

Figu re 4—Example of Air Force test and printed results

the specific tests or modules he was interested in and The Compiler Validation System (of which the sup-
the AFCCVS would create one or more programs from port program was written in COBOL) had to be readily
a file of specific tests which were then compiled as audit adaptable to any computer system which supported a
routines. Implementor-names were resolved as the COBOL compiler and which was likel y to be bid on any
programs were generated based on parameter cards RFP issued by the Department of Defense or any of
stored on the test file or provided by the user, its agencies. It also had to be able to communicate with

The process required several passes, including the the operating system of the computer in order to pro-
sorting of all of the selected tests to force the Data vide an automated approach to validating the COBOL
J)ivision entries into the Data Division and place compiler . The problem of interfacing with an operating
the tests themselves in the Procedure Division where system may or may not be readily apparent depending
t i i i ’v  logically belonged. An addition al pass was re- on whether an individual is more familiar with IBM ’s
(luir ild  to eliminate duplicate Data Division entries Full Operation System (OS), which is probabl y the
(more than one test might use the same data-item and most complex operating system insofar as establishing
therefore there would be more than one copy in the communication between itself and the user is con-
l ) : t t :n  Division). See Figure 4. - cerned , or with the Burroughs Master Control Program

Still another program was used to make changes to (\ IC P) ,  where the control language can be learned in a
the source programs as the compiler was validated , fift een or twenty minute discussion.
As in the Navy system, certain elements had to be Since validating a compiler may not be necessary
eliminated because: ( I )  they were not syntacticall y very often , the amount of expertise necessary for corn-
acceptable to the compiler or , (2) they caused run time municating with the CVS should be kept to a minimum .
aborts. The output of the routines should be as clear as possible

in order not to confuse the reviewer of the results or to
suggest ambiguities.

De~xirtment of Defense COBOL validation system The decision was made to adopt the Navy support .
system and presentation format for several reasons.

In l)eeember 1970, The Deputy Comptroller of ADI~ (1) It would be easier to introduce the Air Force tests
in the Office of th e Secretary of Defense asked the into the Nay routines as additional tests because the
N avy to create what- is now the DOD Compiler Valida- Navy routines were already in COBOL program format.
t ion Syst em for ( 01M)L taking advantage of:  ( 1) the It would have been difficult to recode each of the N avy
latt er features of both the Navy COB( )L Audit  Rou— tests into the format of specific tests on the Air Force
ines V’ rsi, in 4) and th e  Air F’ irce ( ‘( ‘VS and (2 )  the Population File because of the greater volume of tests -

four y,’ars of in-house experience in designing and im — ( 2)  The N avy support program had become rather
plement ing audit routines on various svs t e i i t s  as well its versatile in handling control card s, even for IB\ l  I~

the actual vah ida t 0~11 Of ( Omp liers for pro curemen t 1) 5 , whereas th e Air Force svsiern had only limit ed
purposes. control card generation capability.

-— ~~~~~~~~ —~~~~~~~~~~ - 
~~~~~~~~~~

-. 

-



— - -~~~~~~~~z~~
_, -— —I---- 

.

824 Fall Joint Computer t. u~~~-o nee , 1972

The merg ing of the A ir  1 . 
~~~ iiad .\ ary r t l u t ,m .~ ~ iIt I II’

AI)D.i EST-t .
‘fbi’ actual merging of th e r ( ( u t i l%es  started in MOVE i 10 \ ‘ .P .~~ I i  ~- / l l  If

February 1971 :uid ii t t i iu .ied un t i l  Sept - i t i l  i •r 1971
During th mi rging opt r ~tU n i  i t  “. Ia not d that th re U i i )  1)0 U I H I h 

Iwas v rv litt k iverlap or n d  un danry  in t lie fu nctions - 

PERF( R~~ .~~~ test i i i  I l i i i  III . I(tested h~ the Air Force and N a V V  ~vst ems . In :tet uality , ( I~~ II I I !L( ~? I t  hILt
t h e  two sets (if tests eounpkn~ented each other. This
could ui i lv  be a t t r ibu ted  to the  differ .nt philosophies ~~~ .

~if the two organizato ins wli i i ’ hi  ri giri a ily created the 1 . I ) , .- - 
-(~ O J O  ‘J i l l  ~ 10 i ~~- \ I Ir L I : . , .  ,~x i t  ; i a t l i  I I : , ’routines. F or examp le in the test s for the ADD state— 

I I  I .ment: Al )1)- l l U l l - thI - r l I ~~~I i . a ) i  t.I

1’Elt I ‘I IM 1) 1 1.1. r i :  W r I t .  I i t L t t ( ’ tf lp f lt  1
Air  .F’oree .“~..zi y (0 ‘I.’) .\. T ) l ) — % V R l l~E — J .  t e,. ( ~~ I i , .~ L t e . I ‘.‘I~ t L I I

J J •  — ( ~~ I L I I I  I tsigned fields unsighed fields 
I. k I H — F _ \ l 1 ,— i . ‘- ‘ rr ~’~ ( I I - !most fields 18 digits lung most helds 1— 11) digits 

~~~ .Al. PJ IA fl ( ( ‘  ‘‘.1 1 1 . 1 )  . : t ~ in fi r long MOVE ‘~ 1( 1  ( ‘ ~~1~~R i . I I fur I I I I t i I L g

more computational more display iteeis PERFORM 1 ‘i. t  1~items Al) 1)—WR1TE- ~ l ( i- ~- ii l t -  I I ,  j r r t ~~l .
MOVE ADl)-1 F:~’r-l Tf,) I’ .\RA . I {Al ’ l i  N A M E .

- PER FORM P I N I  RE.~( 1;I ’~After examining the Add tests for the combined DOD AI)I)-TEST-2routines, it was noticed that a few areas had been
totally overlooked. Figure 5 F:\:.ni)Jc of 15( 1)  test and ri ~g code

the routme i dLSi lused t t i ,  h u h ’ - in I t -  ~aj i,latinii ‘vs~1. An ADD statement that forced the temp
tems being used prior (I i i ’  curr ent Ut I I )  i i i  in s.used by the compiler to hold a number greater The general format of each te st is m a d  up of ,s t ’v i rdthan 18 digits in length: 
paragraphs : (1 )  th e  n-I ual ~t -st  paragrap h ;  2 a

i.e., ADD + 999999999999999999 “delete ” paragrap h ‘,~h iuehi  l i i  ~ td~~i i i i a gt l I f  the
+999999999999999999 COBOL ~~ Yl’l for de le t i ng  t u ~~~— t i i ieh i  t h i  e i i i ip iht ’r
+999999999999999999 being validated cannot handle;  I s )  the ‘fail ’ paragrap h
— 9999999999999~tJ999 for put tilig out the e imput ed and e iIvr , . I ’ t  r esults when
— 999999999999999999 a test fa i ls ;  and ~4 a I it  i) ar igr~~~ J i which places
—99 TO ALPHA the test name in f he output  line and :IU .’u-s it to he

written. See Figure .~~.. . . where the intermediate result would he The nui gnitu di- (i f t I : t  siz e I i  (lie Dol) Audit J~out in es
greater than 18 digits, but the final result would was approiwhmg 1~~ O()t) litws iii s ar i ’, t i s l ing ,
be able to fit in the receiving field, making up 130 pr ogr :iriis . ‘l’l ,- n i in ihe r  of envir on—

2, ‘T’here were not more than eight operands in mt-nt  al changes (resolut i l i l  of in i p l r i i i t ’ i i t i  ‘r — i i a t i i i s )  ~~aM
any one AI)D test, in the nei ghhorh ’ )od of I (8$) and 1 t o-  numb. r of ipt-rat—

3, A size error test using a CO~iIPUTA TI ONAL j og sy stem - I t I t r u i l  ‘ ards required 0 L \ I I ilie the
field ~ hien the actual value could he greater program would he from I :o~~ to ‘~, i#~ i .hi .p ntling on the
than the described size of the fit-I d , i . e ALPH A complexity i t  I l i e  I ~ I r i  ing ‘-V ’  I~ Oi  I 1 l \ I  k - I
PICTURE 9(4) COMP. . - specifies a data item This was win- r i -  t i e  ~t i~qiort pr ogr :LIIi t i t u l d  -.avi a
that could contain a maximum value of 9999 largt’ amount III  h~ it ii ~ rh and i i  .1 . i  - - l ’hr ‘, r sat i le
without an overflow condition; however, because Program \ I art :  ~ r I T  t ~- ‘~ i i i  V 1’ .\ 1 5 1 )  ‘~ a.—
the field may be set up internall y in binary , the to harolli- all .if ( l i t -s, j r h h m i i ~ 0 u t  a t l i i i i i i i m i i i i i  I I I
decimal value may hi’ less than the maximum effort.
binary value it could hold :

Maximum COBOL value = 9999 l ’ersahle program miznagcru rnt s i i ’t ’  ei ( I  - I ’ ll  - ‘il
Maximum hardware value~~l6383

A good pi rt i r t I I  ti n - ni.- r g ir ig rtelt i i j ’- t l nil i t i nittl
Therefore , from this point of view , the merging of enhancements t i  t h e  \ I’ \ 151 ii i rt program)

.. - - -~~-~~~~~~~~
- ._ . - - 

- 
~:~~~~~~~~i



~~~~~~~ - -~ - - - - - - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -
-
-——-- 

-
-

-
--~~-~~-

-

The DOD COBOL Compiler Validation System 825

which , by this time, through an evolutionary proc~~ If , while executing the object program of an audit
had learned to manage two new languages ; FORTRAN routine , sn abnormal termination occurs, then a change
and JOVIAL. The program had been modified based is required, The cause might be, for example, a data
on the additional requirements of various operating exception or a program ioop due to the incorrect im-
systems for handling particular COBOL problems ; plementation of a COBOL statement. In any case, the
th .- need for making the system easy for the user to test in question would have to be deleted . The NOTE
interface with , and the need to provide all interfaces wpuld be used as specified above.
between the user , the audit routines, and the operating In addition , VPMSI provides a universal method
system. of updating source programs so that the individual who

validates more than one compiler is not constantly re-

The introduction of implementor names through “X-cards” quired to learn new implementor techniques for up-
dating source programs,

Example of update cards through VPMS 1:The first problem was the resolution of implemcntor-
mimes within the source COBOL programs making up 012900 02 A PlC ZZD (If  the sequence number is
the audit routines, In the COBOL language, particularly VALUE 1. equal the card is replaced ;
in the Environment Division , there are constructs which 01321c MOVE I TO A. if there is no match the
must contai n an implementor-defined word in order for 014310 NOTE card is inserted in the ap-
the statement to be syntactically complete. Figure 6 propriate place in the
shows where the implementor-names must be provided , 

program.)THE NOTE placed as the first word in the para- 014900* (Deletes card 014900)
graph causes the entire paragraph to be treated as 029300*099000 (Deletes the series from 029300
comments. Instead of the “Go TO ADD-WRITE- I ” through 099000).
statement being executed, the logic of the program falls
into the delete paragraph which c’tuses the output re- To carry the problem a step further, Some of the
stilts to reflec t the fact that the test was deleted, names used by different implementors for the high

If the syntax error is in the Data Division , then the speed printer in the SELECT statement- have
coding itself must be modified. VPMS1 shows, in its been PRINTER , SYSTEM-PRINTER , FORM-
own printed output , the old card image as well as the PRINTER , SYSOUT, SYSOU1, P1 FOR LIST-
new card image so that what has been altered is readily ING , ETC. It is obvious to a programmer what the
apparent, i.e., imp lementor has in mind , but the compiler (-hat experts

SYSTEM-PRINTER , will certainly reject any of
012900 02A PlC ZZ9 Value ‘1’, NC1O85.2 OLD the other names, Therefore , each occurrence of an
012900 O2 A PIC ZZ9 VaIueI , NC108~RE NEW implementor-name must be converted to the correct

name. The approach taken is that- each implementor- I - -
ENVIRONMENT DIVISION. name is defined to VPMS1. For example, the print er
SOURCE-COMPUTER, is known as XXXX36 and the audit routines using

implementor-name- 1. the printer would be set up in the following way :OBJECT-COMPUTER.
implementor-name-2, SELECT PRINT-FILE ASSIGN TO

SPECIAL-NAMES. XXXXX36iniplementor-name-3 is MNEMONIC-NAME
And the user would provide the name to be used by the
computer being tested through an “X-CARD. ”

FILE-CONTROL X-36 SYSTEM-PRINTER
SELECT FILE-NAME ASSIGN TO implementor-name-4. VPMSI would then replace all references of XXXXX36

with SYSTEM-PRINTER.
SELECT PRINT-FILE ASSIGN TO

- SYSTEM-PRINTER,

data divi s ion.

F!) FILE-N’LM E Ability to update programs
VALUE OF implementor .name-~ IS implementhr-defined .

Figure ~~
— Imphementor de6n~ I nam~ that would app~~r The next problem was to provide the user with a

in a COBOL pr . gr an , method for making changes to tht ’ audit routines in

___ - — - - -  ;-~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .—



-
~~ 

- 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

o t t  Cornput ’-r ( ‘~~, I I ’ I ’ iI e

I ‘!‘I’~~1 -I to th eir  ‘‘pp r opr it t t  - c h a r i i l t l  i~ 1t ~.. .~~~~b~~i i v  
- 

~~

I - 
- -.-O~~ t hv t he user as an update t~ the program.) actual control card sti ~rr~ in position ~ of t !i~ t f l~

\ i  i ’~ i-. 1 i t )  tL l’  record. Position ofle is r ’served for a c-ode that  Spi ro I S

TI) TO .WD-W ~ -J FE-t. the type of control card The -~ h i w in g  is allowed i i i

-\ 1)~ 1 1J ETI. - specifying control cttrd .I ~~1 1  I control card~ irl

I ( t  1 i 1 j T E  generated once at the r g i i u l i -L ’ t - f  t he  file.  J3(’ t I T ’ i ! J ~~
control card,s are generated before c-ac-li snOre ~)regr~
with a provision for specif ying (t I nt ro l  cards \-,h i cl
ir e generated at specific (me - 

- , JOB t ype c-ard~
r ~ I r -  7 -  i ~-wi~ile of deleting a test in the 1)01) CCVS subroutine type (-ard~ 10 I :-: try control cards, etc. End-

ing control cards are generated after each source pro-
gram with the same I revise in as beginning coat t I

an I rd ii ‘- t N h ioLt  and ~t the same t inn ’  provide a ~~i— cards . Terminal control cards art’ generated prior (ci

mulli a i n1 u LI :  II~ documentation for c-ac-l i change made, the file being closed. Ad dtt ional  control (-ards are
art  t I ll r a ~ots f r  the user to tic-ed .o make generated for assi glling hardware devices to the objec t

I~~~J~~I ,O j a.-t a, t h -  actual audit routines : program , bracketing data and for assig ilir ig work areas
to be used by the COBOL Sort.

Th-~re are approx:mately 25 files used by the (-nti r ( -
a. If ~i I compiler will not ac- I pt a fnr tn of syntax set of validation routines for which control cards may

;~ t i u i s t  he eliminated in order to create a syti— need to be prepared. In addition to the control cards
tae ’ !k’ t u r r et program. There are two ways and inform ation fur the Environment Division , the
to -~ -i mp lis l i  ~~~ In the Procedure Division total number of control st i t e r l e t i t s  printed for VP.\ISI
ti e I 1 ! ’  statement is used to force the “in- could be in the neighborhood of 200 curd images and

si (’ r i ie t i t ~ to become comments. The the possible number of generated control cards on the
1 this action would cause th e test to be output file could be as large as 50(X). The saving in tim e 

•1
u- ic- : - and this would be reflected in the out- and JCL errors that could he prevented should be

put .  Sc-u Figure 7. obvious at this point.
This Environmental information need not be pro-

( ! ~~ ~h~~TING SYSTEM CONTROL CARD 
vided c~ ot r ci l

I - ~ in question , they can be placed in the  library file that
contains the same program so that- a single r c -qu ’~ t

The ird problem was the generation of operating could extract the VPMS1 contro l cards for a given
( 1 sli t t ( i l i t r ’ . (  -ardt in the appropriate position relative system.
to t i , t -  .euir ce programs in order for the programs to be

td -d and -xecuted . This was the biggest
i-jr V P M S I ;  a COBOL program which had CONCLUSIONI t) I I )  .t r I ( I~~~ It ~~~~~ j y  compatible with all COBOL corn— —

tail .‘. h u b  ilso had to be able to interface with
~l l I;I -r h u g  s\-sO ins with a negligible amount of It has been demonstrated that the validation of COBOL

.~ cu for each system . compilers is possible and th a t  the (-nd result is bc-ne—
The j I ~~~~~~ Is Ip }iy ( it  th e output of VPMS1 is a file In-tal to both compiler writers and the users of these

c - ( C~- ( l l ) I I - ( I I  a Particul ar operating system as input. -ompilers . The ease with which the DOD CCVS can
F or I tc -  most part th is  file closely resembles what would be automatically adapted to it given computer system

—- I Ih - - II I ( I l i I ( ’ i I  to th e  operating system throug h has eliminated approximat el y ~5 I n  ~(0 percent of the
h ,,~ t ’ r n ’s in: I1~~t t i c - v i c e  or card reader, i.e., control work involved in validating a ( ‘( ) l ( t  ) I l  ( ‘oml)iIer.

- Ii - - SI I I  r, - - - r ,  Igr: m , d i  t t i , etc . Alt  houg h most comp ilers are ~ n t  I t t ,  f rom the same
‘rho ‘I - t ic - r a t  (I at of I l l  r d  tug  syst ~ ni control cards is basic specifications (i. e., the American National Stan—

I I i t l i i ’  sp . i : f I r  placement. nf th c -  statement and (lard COBOL, X3.23—l968. or th e COl ) .- ‘tSY l~ COBOL
i, - - j I l l - l i t  I Ir ltee(l for specific stat t ’mi ’nts to ti c— ,Journal of Development) the results are not always

rII ~ • I _ } j  i t i th i t i o t i t i l  f l i n t - I r i S .  ‘l iteso (‘onitr ol cards are the  sar it, ’ . The I)OD ( ‘( ‘VS ha.s ~~ ~ d numerous 
t t  ( I i  ~~ ‘MSI iii a form that will not hr int er— comp iler bugs as well as misinterpret ations of the

i t  - ti by ‘ ‘I f-I l l rig svsteni and are annotated u . s  language . Due to t his and si i t r i l a r  efforts in the area i f

— - - - -~~~ — ~~~~— -
~~~-‘ — — ~

. -~~~~~~~~~ -— - —- —~~ —~~~~~~~~ 
-—- —- —— ___~~__~~~~ ~~~~~~~~~~~~~~~ -- :~~~~~~

-.— 
~~~~~~



- 
~~~~~~~~~~~~~~~~~~~~~~~~ 

‘I ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 

-

~ ~~~~~~~~~

The DOD COBOL Compiler Validation System b27

compiler validation , the compatibility of today’s all contributing to better software, both at the compiler
compilers has grown to a high degree. and the application level .

We are now awaiting the next version of the American
National Standard COBOL. The new specifications REFERENCESwill provide an increased level of compatibility between
compilers because the specifications are more definitive,, I American National Standard OOBOL X3.23-1968
and contain fewer implementor defined areas. In . American National Standards Institute Inc. New York 1968
addition, numerous enhancements and several clan - 2 OOBOL-61 Conference on Data System Languages
fications have been included in the new specification— U. S. Government Printing Office Washington D. C. 1961

- - ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~L.i



- - - - ‘~~~~~~~~~~
--- -

~~~~~~~~~~~~~~ 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ::~~~~i . J~~~

’ --- .-- -._•_----—-—--—_--—-—
~~~~~~~~~~~~~

--

L

(~~ T 
_ _ _ _ _ _

r~ BLIOCRAP HIc DATA “A
~~~ TS/ TR_ 77~~3 / 

J2. 3.’R clci pient ’s Ac~~~5 sj o n  No.

~~. 
-t uk and Subtitle ____________

‘
-,
.- 

-, - --- -
~~~~~~~~~~~

—.—-
~~~~~~~~~~~~~~~~~ ——~~~~~~~ —— ~~ R~ ~~~~~~~~ -- - -  —

The DOD COBOL 
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 6. 

May $77 J

7. ~~~~~~ ~~~~~ ~~~~~~~~~~ 
•
~~~ -

George~~~~~~~ird 
8. P f o r m i n g  O r g a n i z at i o n  R ep t .

~ ~~~~~fl5 I~ ~u1~~ s~~~~~ ame and A ddress io. Pro jec t /T as k/ ~ ork Unit No
Federal COBOL Compiler Testing “ervice -

~ / ~~~~~~~ 
________________________ADPE Selection O f f i c e  i~. Contract ‘Grant No.

Department of the Navy
Washington , D. C. 20376

12. Sponsor ing Organization Name and A ddress -13. Type of Report & Period
ADPE Selection O f f i c e  Covered
Department of the Navy
Washington , D. C. 20376 14.

15. Supplementary Notes

16~~~~ s rr acrs

his technical repor t goes into the history of COBOL comp iler validations. It
describes several early e f f o r t s  by various committees and of d i f fe ren t  agencies
within  the yederal Government. The main thrus t of the report is the COBOL Compiler
Valida tion System which was produced by the Department of the Navy a f te r  parti-
cipa ting in , and reviewing the, results of the less than successful efforts that

preceded the work of the Navy . It discusses the implementation problem surrounding
the CCVS (which would be applicable to any COBOL system) and the automated source
program libraries (VP—routine)  developed to speed up the implementation by resolving
implementor—names , providing a technique for updating the source program , and
generating the necessary Job Control Language necessary to compile and execute
each of the audit  routines making up the CCVS .

17. Key Woids and Document Anal ys is. h o .  Descr iptors

COBOL
Validation ~~~~~~ 

- - —

Software -
~~~~~ ~~~~ -

Audit Routines F ’~ ~~~~I:, ~~- ( - ~t

Verif ying 8ttli ~ Cti~ 0
Compilers  .-.‘ 

-

Standards .,. * 
Programming Languages

llb. Ident ifi ers (Open-Ended Terms -‘I~~~~ f~~~/A~~~~~~I SI lTY 
CCVS - ~~~~~~~~~ ~~~~ $V~~ L

17c. COSATI Field /Gro up 09/02
18. Avai labi l i t y Statement 19. S~~ u r u v  ( l a s s  ( T h i ’  21. No. ~~Ri-pI le 1

Release unlimited . - 
U NCLASSII ILU)

20. Se~ o n l y  I lass  ( T h e -  22. I’r i t  ~ -
~~~

F O A M  N 1 ’ i S - 3 5  IR 
— I J N C LA S S J F I I - p

-

~~~ 

L V .  3.7 21  

~
$
~~~~It? 

THIS FORM MAY BE REPRODUCED USC0MM’Dc

I . - --

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - - - ~~~~~~~~~ --~~~~~~~~~~~~~~~ -



F

4 -



Ii. —

_______ 
—

sii ~ — -

—
—

- r

Li1 
_

I 

-

_

t -

~~~~ 
l~~~~~~~~~~~~~~~~~~ [

4 ~~II~~ 1 ~~~ ~~~~~~~~~~~~~~~~~~~~


